第頁
FireFox、Edge瀏覽器可關屏朗讀
Chorme則需開屏朗讀。
清史稿 上
一,用兩時日躔、月離黃道度求實朔、望。先推平朔、望以求其入交之月,次推本日、次日兩子正之日躔、月離黃道經度以求其實朔、望之時,又推本時次時兩日躔、月離以比例其時刻。與甲子元法止用兩日及用黃白同經者不同。一,用兩經斜距求日、月食甚時刻及兩心實相距。以黃白二道原非平行,而日、月兩經常相斜距。若以太陽為不動,則太陰如由斜距綫行,故求兩心相距最近之綫,不與白道成正角,而與斜距綫成正角。其距弧變時,亦不以月距日實行度為比例,而以斜距度為比例。如圖甲乙為黃道,戊乙為白道,甲戊為實朔、望距緯,甲癸為太陽一小時實行,戊醜為太陰一小時實行。設太陽不動而合癸與甲,則太陰不在醜而在寅。戊寅為一小時兩經斜距綫,甲卯與戊寅成正角,即為兩心相距最近之綫,戊卯為食甚距弧,皆借弧線為直線,用平三角形求之。初虧、復圓,則以並徑為弦作勾股。一,更定日、月實徑與地徑之比例。西人默爵製造鏡儀,測得日視徑最高為三十一分四十秒,中距為三十二分一十二秒,最卑為三十二分四十五秒;月視徑最高為二十九分二十三秒,中距為三十一分二十一秒,最卑為三十三分三十六秒。用此數推算日實徑為地徑之九十六倍又十分之六,月實徑為地徑百分之二十七,小餘二六強,太陽光分一十五秒。本法用之。
一,更定求影半徑法及影差。以日、月兩地半徑差相加,內減去日半徑,餘即為實影半徑。又月食時日在地下,蒙氣轉蔽日光,地影視徑大於實徑約為太陰地半徑差六十九分之一,是為影差。如圖甲丁辛三角形,丁辛二內角與壬甲辛一外角等,丁角即太陽地半徑差,辛角即太陰地半徑差, 甲丁綫略與甲丙日天半徑等,甲辛綫略與甲己月天半徑等,其角皆與地半徑甲乙相當故。 壬甲己對角丙甲丁即日半徑。故以丁角、辛角相加,即得壬甲辛角,內減壬甲己角,餘己甲辛角,即實影半徑。
圖形尚無資料
一,更定求日食食甚真時及兩心視相距。借弧線為直線,用平三角形,以食甚用時兩心實相距為一邊,用時高下差為一邊,用時白經高弧交角為所夾之角,求得對角之邊,為兩心視相距,並求得對兩心實相距角。復設一時, 限西向後設,限東向前設。 求其兩心實相距及高下差為二邊。白經高弧交角與對設時距弧角相減,餘為所夾之角,求得對角之邊,為設時兩心視相距,亦求得對兩心實相距角。乃取用時、設時兩白經高弧交角較,與用時對兩心實相距角相減。又加設時對兩心實相距角,又與全周相減為一角,用時、設時兩視相距為夾角之二邊,求其對邊為視行,求其中垂綫至視行之點,為食甚真時所在,垂綫為真時視相距。 以上加減,據向後設而言。 然後以所得真時,復考其兩心視相距果與所求垂綫合,即為定真時。如圖乾為日心,乾子為用時兩心實相距,乾壬為高下差,壬子為兩心視相距,乾午為設時兩心實相距,乾己為高下差,己午同壬未為兩心視相距,壬醜中垂綫為真時視相距。初虧、復圓法同,但以並徑為比考真時之限。至帶食則以地平為斷,亦逕求兩心視相距,不用視行。
恆星改法之原,見天文志。
土星改法之原,見推步因革篇。
羅★、計都更名,乾隆五年,和碩莊親王等援古法奏請更正,下大學士、九卿議奏,乾隆九年更正。
紫氣增設之原,大學士、伯訥爾泰等議覆,更定羅★、計都名目,★援古法增入紫氣,約二十八年十閏而氣行一周天,每日行二分六秒,小餘七二0七七七。以乾隆九年甲子天正冬至,次日子正在七宮十七度五十分十四秒五十三微為元。
日躔用數,雍正元年癸卯天正冬至為法元。 壬寅年十一月冬至。
周歲三百六十五日二四二三三四四二。
太陽每日平行三千五百四十八秒,小餘三二九0八九七。
最卑歲行六十二秒,小餘九九七五。
最卑日行十分秒之一又七二四八。
本天橢圓大半徑一千萬,小半徑九百九十九萬八千五百七十一,小餘八五,兩心差十六萬九千。
宿度,乾隆十八年以前,用康熙壬子年表,十九年以後,用乾隆甲子年表,俱見天文志。
各省及蒙古、回部、兩金川土司北極高度、東西偏度,見天文志。
黃赤大距二十三度二十九分。
最卑應八度七分三十二秒二十二微。
氣應三十二日一二二五四。
宿應二十七日一二二五四。
宿名,乾隆十八年以前,同甲子元,十九年以後,易觜前參後,餘見甲子元法。
推日躔法求天正冬至,同甲子元法。
求平行,同甲子元法。
求實行,先求引數,同甲子元法。乃用平三角形,以二千萬為一邊,倍兩心差為一邊,引數為所夾之角, 六宮內用內角,六宮外與全周相減用其餘。 求得對倍兩心差之角,倍之為橢圓界角。又以本天小半徑為一率,大半徑為二率,前所夾角正切為三率,求得四率為橢圓之正切,檢表得度分秒。與引數相減,餘為橢圓差角。最卑前後各三宮與橢圓界角相加,最高前後各三宮與橢圓界角相減, 自初宮為最卑後,以此順計。 為均數。置平行,以均數加減之, 引數初宮至五宮為加,六宮至十一宮為減。 得實行。
求宿度。
求紀日值宿。
求節氣時刻。
求距緯度。
求日出入晝夜時刻。★同甲子元法。
月離用數太陰每日平行四萬七千四百三十五秒,小餘0二三四0八六。
最高每日平行四百零一秒,小餘0七0二二六。
正交每日平行一百九十秒,小餘六三八六三。
太陽最大均數六千九百七十三秒。
太陰最大一平均七百一十秒。
最高最大平均一千一百九十六秒。
正交最大平均五百七十秒。
太陽最高立方積一0五一五六二。
太陽高卑立方大較一0一四一0。
太陽在最高,太陰最大二平均二百一十四秒。
太陽在最卑,太陰最大二平均二百三十六秒。
太陰最大三平均四十七秒。
本天橢圓大半徑一千萬。
最大兩心差六六七八二0。
最小兩心差四三三一九0。
最高本輪半徑五五0五0五,即中數兩心差。
最高均輪半徑一一七三一五。
太陽在最高,太陰最大二均一千九百九十四秒。
太陽在最卑,太陰最大二均二千二百三十一秒。
太陰最大三均一百四十五秒。
兩最高相距一十度,兩弦最大末均六十一秒。
相距二十度,兩弦最大末均六十七秒。
相距三十度,兩弦最大末均七十六秒。
相距四十度,兩弦最大末均八十八秒。
相距五十度,兩弦最大末均一百零三秒。
相距六十度,兩弦最大末均一百二十秒。
相距七十度,兩弦最大末均一百三十九秒。
相距八十度,兩弦最大末均一百五十九秒。
相距九十度,兩弦最大末均一百八十秒。
正交本輪半徑五十七分半。
正交均輪半徑一分半。
最大黃白大距五度一十七分二十秒。
最小黃白大距四度五十九分三十五秒。
黃白大距中數五萬八千五百零七秒半。
黃白大距半較五百三十二秒半。
最大交角加分一千零六十五秒。
最大距日加分一百六十三秒。
太陰平行應五宮二十六度二十七分四十八秒五十三微。
最高應八宮一度一十五分四十五秒三十八微。
正交應五宮二十二度五十七分三十七秒三十三微。餘見日躔。
推月離法求天正冬至,同甲子元法。
求太陰平行,同甲子元法。
求最高平行,同甲子元法求月孛行。
求正交平行,同甲子元法。
一,更定求影半徑法及影差。以日、月兩地半徑差相加,內減去日半徑,餘即為實影半徑。又月食時日在地下,蒙氣轉蔽日光,地影視徑大於實徑約為太陰地半徑差六十九分之一,是為影差。如圖甲丁辛三角形,丁辛二內角與壬甲辛一外角等,丁角即太陽地半徑差,辛角即太陰地半徑差, 甲丁綫略與甲丙日天半徑等,甲辛綫略與甲己月天半徑等,其角皆與地半徑甲乙相當故。 壬甲己對角丙甲丁即日半徑。故以丁角、辛角相加,即得壬甲辛角,內減壬甲己角,餘己甲辛角,即實影半徑。
圖形尚無資料
一,更定求日食食甚真時及兩心視相距。借弧線為直線,用平三角形,以食甚用時兩心實相距為一邊,用時高下差為一邊,用時白經高弧交角為所夾之角,求得對角之邊,為兩心視相距,並求得對兩心實相距角。復設一時, 限西向後設,限東向前設。 求其兩心實相距及高下差為二邊。白經高弧交角與對設時距弧角相減,餘為所夾之角,求得對角之邊,為設時兩心視相距,亦求得對兩心實相距角。乃取用時、設時兩白經高弧交角較,與用時對兩心實相距角相減。又加設時對兩心實相距角,又與全周相減為一角,用時、設時兩視相距為夾角之二邊,求其對邊為視行,求其中垂綫至視行之點,為食甚真時所在,垂綫為真時視相距。 以上加減,據向後設而言。 然後以所得真時,復考其兩心視相距果與所求垂綫合,即為定真時。如圖乾為日心,乾子為用時兩心實相距,乾壬為高下差,壬子為兩心視相距,乾午為設時兩心實相距,乾己為高下差,己午同壬未為兩心視相距,壬醜中垂綫為真時視相距。初虧、復圓法同,但以並徑為比考真時之限。至帶食則以地平為斷,亦逕求兩心視相距,不用視行。
恆星改法之原,見天文志。
土星改法之原,見推步因革篇。
羅★、計都更名,乾隆五年,和碩莊親王等援古法奏請更正,下大學士、九卿議奏,乾隆九年更正。
紫氣增設之原,大學士、伯訥爾泰等議覆,更定羅★、計都名目,★援古法增入紫氣,約二十八年十閏而氣行一周天,每日行二分六秒,小餘七二0七七七。以乾隆九年甲子天正冬至,次日子正在七宮十七度五十分十四秒五十三微為元。
日躔用數,雍正元年癸卯天正冬至為法元。 壬寅年十一月冬至。
周歲三百六十五日二四二三三四四二。
最卑歲行六十二秒,小餘九九七五。
最卑日行十分秒之一又七二四八。
本天橢圓大半徑一千萬,小半徑九百九十九萬八千五百七十一,小餘八五,兩心差十六萬九千。
宿度,乾隆十八年以前,用康熙壬子年表,十九年以後,用乾隆甲子年表,俱見天文志。
各省及蒙古、回部、兩金川土司北極高度、東西偏度,見天文志。
黃赤大距二十三度二十九分。
最卑應八度七分三十二秒二十二微。
氣應三十二日一二二五四。
宿應二十七日一二二五四。
宿名,乾隆十八年以前,同甲子元,十九年以後,易觜前參後,餘見甲子元法。
推日躔法求天正冬至,同甲子元法。
求平行,同甲子元法。
求實行,先求引數,同甲子元法。乃用平三角形,以二千萬為一邊,倍兩心差為一邊,引數為所夾之角, 六宮內用內角,六宮外與全周相減用其餘。 求得對倍兩心差之角,倍之為橢圓界角。又以本天小半徑為一率,大半徑為二率,前所夾角正切為三率,求得四率為橢圓之正切,檢表得度分秒。與引數相減,餘為橢圓差角。最卑前後各三宮與橢圓界角相加,最高前後各三宮與橢圓界角相減, 自初宮為最卑後,以此順計。 為均數。置平行,以均數加減之, 引數初宮至五宮為加,六宮至十一宮為減。 得實行。
求宿度。
求紀日值宿。
求距緯度。
求日出入晝夜時刻。★同甲子元法。
月離用數太陰每日平行四萬七千四百三十五秒,小餘0二三四0八六。
最高每日平行四百零一秒,小餘0七0二二六。
正交每日平行一百九十秒,小餘六三八六三。
太陽最大均數六千九百七十三秒。
太陰最大一平均七百一十秒。
最高最大平均一千一百九十六秒。
正交最大平均五百七十秒。
太陽最高立方積一0五一五六二。
太陽高卑立方大較一0一四一0。
太陽在最高,太陰最大二平均二百一十四秒。
太陽在最卑,太陰最大二平均二百三十六秒。
太陰最大三平均四十七秒。
本天橢圓大半徑一千萬。
最大兩心差六六七八二0。
最小兩心差四三三一九0。
最高本輪半徑五五0五0五,即中數兩心差。
最高均輪半徑一一七三一五。
太陽在最高,太陰最大二均一千九百九十四秒。
太陽在最卑,太陰最大二均二千二百三十一秒。
太陰最大三均一百四十五秒。
兩最高相距一十度,兩弦最大末均六十一秒。
相距二十度,兩弦最大末均六十七秒。
相距三十度,兩弦最大末均七十六秒。
相距四十度,兩弦最大末均八十八秒。
相距五十度,兩弦最大末均一百零三秒。
相距六十度,兩弦最大末均一百二十秒。
相距七十度,兩弦最大末均一百三十九秒。
相距八十度,兩弦最大末均一百五十九秒。
相距九十度,兩弦最大末均一百八十秒。
正交本輪半徑五十七分半。
正交均輪半徑一分半。
最大黃白大距五度一十七分二十秒。
最小黃白大距四度五十九分三十五秒。
黃白大距中數五萬八千五百零七秒半。
黃白大距半較五百三十二秒半。
最大交角加分一千零六十五秒。
最大距日加分一百六十三秒。
太陰平行應五宮二十六度二十七分四十八秒五十三微。
最高應八宮一度一十五分四十五秒三十八微。
正交應五宮二十二度五十七分三十七秒三十三微。餘見日躔。
推月離法求天正冬至,同甲子元法。
求太陰平行,同甲子元法。
求最高平行,同甲子元法求月孛行。
求正交平行,同甲子元法。